Kelompok 10 Teknik Industri UMB

Thank You..... My Teacher!

Sampai di sini, kristal telah diklasifikasikan berdasarkan cara penyusunan partikelnya. Kristal juga dapat diklasifikasikan dengan jenis partikel yang menyusunnya atau dengan interaksi yang menggabungkan partikelnya (Tabel 8.2).

Tabel 8.2 Berbagai jenis krista

 Nilai yang tercantum di atas adalah energi yang diperlukan untuk memecah kristal menjadi partikel penyusunnya (atom, ion, atau molekul (dalam kkal mol-1))

a. Kristal logam
Kisi kristal logam terdiri atas atom logam yang terikat dengan ikatan logam. Elektron valensi dalam atom logam mudah dikeluarkan (karena energi ionisasinya yang kecil) menghasilkan kation. Bila dua atom logam saling mendekat, orbital atom terluarnya akan tumpang tindih membentuk orbital molekul. Bila atom ketiga mendekati kedua atom tersebut, interaksi antar orbitalnya terjadi dan orbital molekul baru terbentuk. Jadi, sejumlah besar orbital molekul akan terbentuk oleh sejumlah besar atom logam, dan orbital molekul yang dihasilkan akan tersebar di tiga dimensi.
Karena orbital atom bertumpangtindih berulang-ulang, elektron-elektron di kulit terluar setiap atom akan dipengaruhi oleh banyak atom lain. Elektron semacam ini tidak harus dimiliki oleh atom tertentu, tetapi akan bergerak bebas dalam kisi yang dibentuk oleh atom-atom ini. Jadi, elektron-elektron ini disebut dengan elektron bebas.
Sifat-sifat logam yang bemanfaat seperti kedapat-tempa-annya, hantaran listrik dan panas serta kilap logam dapat dihubungkan dengan sifat ikatan logam. Misalnya, logam dapat mempertahankan strukturnya bahkan bila ada deformasi. Hal ini karena ada interaksi yang kuat di berbagai arah antara atom (ion) dan elektron bebas di sekitarnya (Gambar 8.8).

Gambar 8.8 Deformasi sruktur logam.
Logam akan terdeformasi bila gaya yang kuat diberikan, tetapi logam tidak akan putus. Sifat ini karena interaksi yang kuat antara ion logam dan elektron bebas.
Tingginya hantaran panas logam dapat juga dijelaskan dengan elektron bebas ini. Bila salah satu ujung logam dipanaskan, energi kinetik elektron sekitar ujung itu akan meningkat. Peningkatan energi kinetik dengan cepat ditransfer ke elektron bebas. Hantaran listrik dijelaskan dengan cara yang sama. Bila beda tegangan diberikan pada kedua ujung logam, elektron akan mengalir ke arah muatan yang positif.

b. Kristal ionik

Kristal ionik semacam natrium khlorida (NaCl) dibentuk oleh gaya tarik antara ion bermuatan positif dan negatif. Kristal ionik biasanya memiliki titik leleh tinggo dan hantaran listrik yang rendah. Namun, dalam larutan atau dalam lelehannya, kristal ionik terdisosiasi menjadi ion-ion yang memiliki hantaran listrik.
Biasanya diasumsikan bahwa terbentuk ikatan antara kation dan anion. Dalam kristal ion natrium khlorida, ion natrium dan khlorida diikat oleh ikatan ion. Berlawanan dengan ikatan kovalen, ikatan ion tidak memiliki arah khusus, dan akibatnya, ion natrium akan berinteraksi dengan semua ion khlorida dalam kristal, walaupun intensitas interaksi beragam. Demikian juga, ion khlorida akan berinteraksi dengan semua ion natrium dalam kristal.
Susunan ion dalam kristal ion yang paling stabil adalah susunan dengan jumlah kontak antara partikel bermuatan berlawanan terbesar, atau dengan kata lain, bilangan koordinasinya terbesar. Namun, ukuran kation berbeda dengan ukuran anion, dan akibatnya, ada kecenderungan anion yang lebih besar akan tersusun terjejal, dan kation yang lebih kecil akan berada di celah antar anion.
Jelas bahwa struktur kristal garam bergantung pada rasio ukuran kation dan anion. Bila rasio (jarijari kation)/(jari-jari anion) (rC/rA) lebih kecil dari nilai rasio di natrium khlorida, bilangan koordinasinya akan lebih kecil dari enam. Dalam zink sulfida, ion zink dikelilingi hanya oleh empat ion sulfida. Masalah ini dirangkumkan di tabel 8.3.
Tabel 8.3 Rasio jari-jari kation rC dan anion rA dan bilangan koordinasi.

c. Kristal molekular
Kristal dengan molekul terikat oleh gaya antarmolekul semacam gaya van der Waals disebut dengan kristal molekul. Kristal yang didiskusikan selama ini tersusun atas suatu jenis ikatan kimia antara atom atau ion. Namun, kristal dapat terbentuk, tanpa bantuan ikatan, tetapi dengan interaksi lemah antar molekulnya. Bahkan gas mulia mengkristal pada temperatur sangat rendah. Argon mengkristal dengan gaya van der Waaks, dan titik lelehnya -189,2°C. Padatan argon berstruktur kubus terjejal.
Molekul diatomik semacam iodin tidak dapat dianggap berbentuk bola. Walaupun tersusun teratur di kristal, arah molekulnya bergantian. Namun, karena strukturnya yang sederhana, permukaan kristalnya teratur. Ini alasannya mengapa kristal iodin memiliki kilap.
Pola penyusunan kristal senyawa organik dengan struktur yang lebih rumit telah diselidiki dengan analisis kristalografi sinar-X. Bentuk setiap molekulnya dalam banyak kasus mirip atau secara esensi identik dengan bentuknya dalam fasa gas atau dalam larutan.

d. Kristal kovalen
Banyak kristal memiliki struktur mirip molekul-raksasa atau mirip polimer. Dalam kristal seperti ini semua atom penyusunnya (tidak harus satu jenis) secara berulang saling terikat dengan ikatan kovelen sedemikian sehingga gugusan yang dihasilkan nampak dengan mata telanjang. Intan adalah contoh khas jenis kristal seperti ini, dan kekerasannya berasal dari jaringan kuat yang terbentuk oleh ikatan kovalen orbital atom karbon hibrida sp3. Intan stabil sampai 3500°C, dan pada temperatur ini atau di atasnya intan akan menyublim.
Kristal semacam silikon karbida (SiC)n atau boron nitrida (BN)n memiliki struktur yang mirip dengan intan. Silikon adalah tetravalen, seperti karbon, dan mengikat empat atom oksigen membentuk tetrahedron. Setiap atom oksigen terikat pada atom silikon lain. Titik leleh kuarsa adalah 1700 °C.
Kristal biasanya diklasifikasikan seprti di latihan 8.5 di atas. Dalam metoda lain, kristal diklasifikasikan bergantung pada partikel penyusunnya, yakni atom, molekul atau ion. Kristal yang tersusun atas atom meliputi kristal logam, kristal kovalen, dan kristal molekular seperti kristal gas mulia. Tabel 8.4 merangkumkan klasifikasi ini.


e. Kristal cair
Kristal memiliki titik leleh yang tetap, dengan kata laun, kristal akan mempertahankan temperatur dari awal hingga akhir proses pelelehan. Sebaliknya, titik leleh zat amorf berada di nilai temperatur yang lebar, dan temperatur selama proses pelelehan akan bervariasi.
Terdapat beberapa padatan yang berubah menjadi fasa cairan buram pada temperatur tetap tertentu yang disebut temperatur transisi sebelum zat tersebut akhirnya meleleh. Fasa cair ini memiliki sifat khas cairan seperti fluiditas dan tegangan permukaan. Namun, dalam fasa cair, molekul-molekul pada derajat tertentu mempertahankan susunan teratur dan sifat optik cairan ini agak dekat dengan sifat optik kristal. Material seperti ini disebut dengan kristal cair. Molekul yang dapat menjadi kristal cair memiliki fitur struktur umum, yakni molekul-molekul ini memiliki satuan struktural planar semacam cincin benzen.
Terdapat tiga jenis kristal cair: smektik, nematik, dan kholesterik. Hubungan struktural antara kristal padat-smektik, nematik dan kholesterik secara skematik ditunjukkan di Gambar 8.15. Kristal cair digunakan secara luas untuk tujuan praktis semacam layar TV atau jam tangan.

Gambar 8.15 Keteraturan dalam kristal cair. Keteraturan dalam kristal adalah tiga dimensi. Dalam kristal cair smektik dapat dikatakan keteraturannya di dua dimensi, dan di nematik satu dimensi. T adalah temperatur transisi.
 
•    Pertanyaan dan jawaban mengenai Berbagai Kristalin
 
1.    Sebutkan beberapa jenis-jenis kristal!
Kristal Logam, Ionik, Molekular, Kovalen, dan Cair.

2.    Apa yang dimaksud dengan kristal molekul?
Kristal dengan molekul terikat oleh gaya antarmolekul semacam gaya Van der Waals.

3.    Bagaimanakah pembentukan kristal ionik?
Kristal ionik semacam natrium khlorida (NaCl) dibentuk oleh gaya tarik antara ion bermuatan positif dan negatif.

4.    Sebutkan 3 jenis kristal cair!
Smektik, nematik, dan kholesterik.

5.    Susunan ion apakah dalam kristal ion yang paling stabil?
Susunan dengan jumlah kontak antara partikel bermuatan berlawanan terbesar, atau dengan kata lain, bilangan koordinasinya terbesar.

 

 




Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal.
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal.
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan.


Gambar 8.4 Struktur terjejal
(a) Satu lapisan khas. Setiap bola dikelilingi oleh 12 bola lain. (b) Lapisan kedua yang mirip dengan lapisan pertama. Setiap bola akan menempati lubang yang terbentuk oleh tiga bola di lapis pertama. (c) setiap bola di lapisan ketiga akan terletak persis di atas lapisan pertama (susunan aba). (d) setiap bola di lapisan ketiga terletak di atas lubang lapisan pertama yang tidak digunaka oleh lapisan kedua (susunan abc).

Perak mengkristal dalam susunan kubus terjejal. Bila kristalnya dipotong seperti ditunjukkan di Gambar 8.5, satu bola akan terletak di pusat setiap muka kubus. Karena satu bola (satu atom) terletak di setiap pusat muka kubus, maka kisi ini disebut dengan kisi berpusat muka.

Gambar 8.5 Kisi kubus berpusat muka
Dalam kasus ini, hubungan antara r, jari-jari bola dan d,
panjang sel satuan, dapat ditentukan dengan teorema Pythagoras.

Latihan 8.1 Kerapatan Logam
Radius atom perak adalah 0,144 nm. Dengan mengetahui bahwa perak berstruktur kubus berpusat muka, hitung kerapatan perak (g/cm3).
Jawab.
Penyusunan atom perak diperlihatkan di gambar 8.5. Anda perlu menentukan volume dan jumlah atom perak dalam satu sel satuan. Karena panjang diagonal adalah 4r, d dapat ditentukan dengan
teorema Pythagoras, d2 + d2 = (4r)2 Jadi : d = r√8 = 0,144√8 = 0,407 nm. Jumlah atom perak dalam satu sel satuan dapat diperoleh dari Gambar 8.5. Terlihat terdapat enam separuh bola dan delapan 1/8 bola. Sehingga totalnya ada 4 bola per sel satuan. Massa atom perak adalah m = 107,9 (g mol-1) / 6,022 x 1023 (atom mol-1) = 1,792 x 10-22 (g atom-1).
Karena kerapatan adalah (massa/volume), maka kerapatan perak dAg = [4.(atom) x 1,792 x 10–22 (g .atom1)]/(0,407 x 10-7)3 (cm3) = 10,63 (g.cm-3). Nilai yang didapat dari percobaan adalah 10,5 (g.cm-3) pada temperatur 20 °C.
b. Kubus berpusat badan
Beberapa logam , seperti logam alkali, mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan sebagaimana diperlihatkan di Gambar 8.6. Cara penyusunan ini disebut dengan kisi kubus berusat badan.


Latihan 8.2 Susunan kristal logam
Dengan bantuan gambar 8.6, jawablah: (1) tentukan bilangan koordinasi atom logam di pusat sel satuan (2) berapa bagian bola bola yang terletak di sudut sel satuan (3) tentukan bilangan koordinasi atom logam di sudut .
Jawab.
(1) 8. Bola di pusat dikelilingi delapan bola lain, satu setiap sudut kubus. (2) 1/8. Ada delapan bola (3) 8. Setiap bola di setiap sudut sel satuan hanya bersentuhan dengan delapan bola di pusat sel satuan yang mengelilinginya.
Karena bilangan koordinasinya 8, susunan kubus berpusat badan bukan susunan terjejal.
c. Analisis kristalografi sinar-X
Teknik analisis kristalografi sinar-X pertama dikenalkan di awal abad 20, dan sejak itu telah digunakan dengan meluas untuk penentuan struktur berbagai senyawa. Teknik ini dengan sempurna telah menyelesaikan berbagai masalah yang sebelumnya tidak dapat diselesaikan. Tahap awal dicapai oleh William Henry Bragg (1862-1942), sang ayah, dan William Laurence Bragg (1890-1971), anaknya, yang menentukan struktur garam dan intan.
Hingga beberapa tahun terakhir, analisis kristalografi sinar-X hanya dilakukan para spesialis, yakni kristalografer, apapun molekul targetnya. Sungguh, pengukuran dan pemrosesan data yang diperlukan memerlukan pengetahuan dan pengalaman yang banyak. Namiun kini, berkat perkembangan yang cepat dan banyak dalam bidang hardware maupun software kristalografi sinar-X, pengukuran kristalografi sinar-X telah menjadi mungkin dilakukan dengan training yang lebih singkat. Kini, bahkan kimiawan sintesis yang minat utamanya sintesis dan melakukan analisis kristalografi sinar-X sendiri. Akibatnya molekul target yang dipelajari oleh para spesialis menjadi semakin rumit, dan bahkan struktur protein kini dapat dielusidasi bila massa molekulnya tidak terlalu besar. Kini pengetahuan tentang analisis kristalografi diperlukan semua kimiawan selain NMR (Bab 13.3).
Difraksi cahaya terjadi dalam zat bila jarak antar partikel-partikelnya yang tersusun teratur dan panjang gelombang cahaya yang digunakan sebanding. Gelombang terdifraksi akan saling menguatkan bila gelombangnya sefasa, tetapi akan saling meniadakan bila tidak sefasa. Bila kristal dikenai sinar-X monokromatis, akan diperoleh pola difraksi. Pola difraksi ini bergantung pada jarak antar titik kisi yang menentukan apakah gelombang akan saling menguatkan atau meniadakan.

Gambar 8.7 Kondisi difraksi Bragg.
Difraksi sinar- X oleh atom yang terletak di dua lapis kristal. Bila selisih lintasan optis, xy + yz = 2dsinθ, sama dengan kelipatan bulat panjang gelombang, gelombang tersebut akan saling menguatkan.
Andaikan panjang gelombang sinar-X adalah λ (Gambar 8.7). Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum bila:
nλ = 2dsinθ … (8.1)
Persamaan ini disebut dengan kondisi Bragg.
Kondisi Bragg dapat diterapkan untuk dua tujuan. Bila jarak antar atom diketahui, panjang gelombang sinar-X dapat ditentukan dengan mengukur sudut difraksi. Moseley menggunakan metoda ini ketika ia menentukan panjang gelombang sinar X berbagai unsur. Di pihak lain, bila panjang gelombang sinar-X diketahui, jarak antar atom dapat ditentikan dengan mengukur sudut difraksi. Prinsip inilah dasar analisis kristalografi sinar-X.
Latihan 8.3 Kondisi Bragg
Sinar-X dengan panjang gelombang 0,154 nm digunakan untuk analisis kristal aluminum. Pola difraksi didapatkan pada θ = 19.3°. Tentukan jarak antar atom d, dengan menganggap n = 1.
Jawab
d = nλ/2sinθ = (1 x 0,154)/(2 x 0,3305) = 0,233 (nm)

•    Pertanyaan dan jawaban mengenai Struktur Padatan Kristalin

1. Jelaskan definisi dari  susunan terjejal!
Jawab : susunan terjejal adalah logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin.

2. Sebutkan sifat umum dari susunan terjejal!
Jawab : (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya.

3. Jelaskan apa yang  dimaksud dengan penyusunan kubus berpusat badan!
Jawab : yaitu : Logam mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan.

4. Apa fungsi dari Analisis kristalografi sinar-X?
Jawab : digunakan dengan meluas untuk penentuan struktur berbagai senyawa

5. Jelaskan apa yang yang dimaksud dengan Kondisi Bragg?
Jawab : Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum

Sampai di sini, yang telah dibahas adalah, cairan satu komponen, yakni cairan murni. Fasa cair yang berupa sistem dua atau multi komponen, yakni larutan juga sangat penting. Larutan terdiri atas cairan yang melarutkan zat (pelarut) dan zat yang larut di dalamnya (zat terlarut). Pelarut tidak harus cairan, tetapi dapat berupa padatan atau gas asal dapat melarutkan zat lain. Sistem semacam ini disebut sistem dispersi. Untuk sistem dispersi, zat yang berfungsi seperti pelarut disebut medium pendispersi, sementara zat yang berperan seperti zat terlarut disebut dengan zat terdispersi (dispersoid).
Baik pada larutan ataupun sistem dispersi, zat terlarut dapat berupa padatan, cairan atau gas. Bahkan bila zat terlarut adalah cairan, tidak ada kesulitan dalam membedakan peran pelarut dan zat terlarut bila kuantitas zat terlarut lebih kecul dari pelarut. Namun, bila kuantitas zat terlarut dan pelarut, sukar untuk memutuskan manakah pelarut mana zat terlarut. Dalam kasus yang terakhir ini, Anda dapat sebut komponen 1, komponen 2, dst.
a. Konsentrasi
Konsentrasi larutan didefinisikan dengan salah satu dari ungkapan berikut:
Ungkapan konsentrasi
1.    persen massa (%) =(massa zat terlarut/ massa larutan) x 100
2.    molaritas (konsentrasi molar) (mol dm-3) =(mol zat terlarut)/(liter larutan)
3.    molalitas (mol kg-1) =(mol zat teralrut)/(kg pelarut)
b. Tekanan uap
Tekanan uap cairan adalah salah satu sifat penting larutan. Tekanan uap larutan juga penting dan bermanfaat untuk mengidentifikasi larutan. Dalam hal sistem biner, bila komponennya mirip ukuran molekul dan kepolarannya, misalnya benzen dan toluen, tekanan uap larutan dapat diprediksi dari tekanan uap komponennya. Hal ini karena sifat tekanan uap yang aditif. Bila larutan komponen A dan komponen B dengan fraksi mol masing-masing adalah xA dan xB berada dala kesetimbangan dengan fasa gasnya tekanan uap masing-masing komponen sebanding dengan fraksi molnya dalam larutan. Tekanan uap komponen A, pA,diungkapkan sebagai:

pA = pA0 xA … (7.2)

pA0 adalah tekanan uap cairan A murni pada suhu yang sama. Hubungan yang mirip juga berlaku bagi tekanan uap B, pB. Hubungan ini ditemukan oleh kimiawan Perancis Francois Marie Raoult (1830-1901) dan disebut dengan hukum Raoult. Untuk larutan yang mengikuti hukum Raoult, interaksi antara molekul individual kedua komponen sama dengan interaksi antara molekul dalam tiap komponen. Larutan semacam ini disebut larutan ideal. Gambar 7.6 menunjukkan tekanan uap larutan ideal sebagai fungsi konsentrasi zat teralrut. Tekanan total campuran gas adalah jumlah pA dan pB, masing-masing sesuai dengan hukum Raoult.

Gambar 7.6 Tekanan total dan parsial larutan ideal.
c. Larutan ideal dan nyata
Sebagaimana juga perilaku gas nyata berbeda dengan perilaku gas ideal, perilaku larutan nyata berebeda dengan perilaku larutan ideal, dengan kata lain berbeda dari hukum Raoult. Gambar 7.7(a) menunjukkan kurva tekanan uap sistem biner dua cairan yang cukup berbeda polaritasnya, aseton Me2CO dan karbon disulfida CS2. Dalam hal ini, penyimpangan positif dari hukum Raoult (tekanan uap lebih besar) diamati. Gambar 7.7(b) menunjukkan tekanan uap sistem biner aseton dan khloroform CHCl3. Dalam kasus ini, penyimpangan negatif dari hukum Raoult diamati. Garis putus-putus menunjukkan perilaku larutan ideal. Peilaku larutan mendekati ideal bila fraksi mol komponen mendekati 0 atau 1. Dengan menjauhnya fraksi mol dari 0 atau 1, penyimpangan dari ideal menjadi lebih besar, dan kurva tekanan uap akan mencapai minimum atau maksimum.

Gambar 7.7 Tekanan total dan parsial larutan nyata (25°C).
Penyebab penyimpangan dari perilaku ideal sebagian besar disebabkan oleh besarnya interaksi molekul. Bila pencampuran komponen A dan B menyebabkan absorpsi kalor dari lingkungan (endoterm), interaksi molekul antara dua komponen lebih kecil daripada pada masing-masing komponen, dan penyimpangan positif dari hukum Raoult akan terjadi. Sebaliknya, bila pencampuran menghasilkan kalor ke lingkungan (eksoterm), penyimpangan negatif akan terjadi.
Bila ikatan hidrogen terbentuk antara komponen A dan komponen B, kecenderungan salah satu komponen untuk meninggalkan larutan (menguap) diperlemah, dan penyimpangan negatif dari hukum Raoult akan diamati. Kesimpulannya, penyebab penyimpangan dari hukum Raoult sama dengan penyebab penyimpangan dari hukum gas ideal.
d. Kenaikan titik didih dan penurunan titik beku
Bila dibandingkan tekanan uap larutan pada suhu yang sama lebih rendah dari tekanan uap pelarutnya. Jadi, titik didih normal larutan, yakni suhu saat fasa gas pelarut mencapai 1 atm, harus lebih tinggi daripada titik didih pelarut. Fenomena ini disebut dengan kenaikan titik didih larutan.
Dengan menerapkan hukum Raoult pada larutan ideal, kita dapat memperoleh hubungan berikut:

pA = pA0 xA = pA0 [nA /(nA + nB)] …. (7.3)
(pA0- pA)/ pA0 = 1 – xA = xB … (7.4)

xA dan xB adalah fraksi mol, dan nA dan nB adalah jumlah mol tiap komponen. Persamaan ini menunjukkan bahwa, untuk larutan ideal dengan zat terlarut tidak mudah menguap, penurunan tekanan uap sebanding dengan fraksi mol zat terlarut.
Untuk larutan encer, yakni nA + nB hampir sama dengan nA, jumlah mol nB dan massa pada konsentrasi molal mB diberikan dalam ungkapan.

xB = nB/(nA + nB) = nB/nA= nB/(1/MA) = MAmB … (7.5)

MA adalah massa molar pelarut A. Untuk larutan encer, penurunan tekanan uap sebanding dengan mB, massa konsentrasi molal zat terlarut B.
Perbedaan titik didih larutan dan pelarut disebut dengan kenaikan titik didih,  Tb. Untuk larutan encer, kenaikan titik didih sebanding dengan massa konsentrasi molal zat terlarut B.

 Tb = Kb mB … (7.6)

Tetapan kesebandingan Kb khas untuk setiap pelarut dan disebut dengan kenaikan titik didih molal.
Hubungan yang mirip juga berlaku bila larutan ideal didinginkan sampai membeku. Titik beku larutan lebih rendah dari titik beku pelarut. Perbedaan antara titik beku larutan dan pelarut disebut penurunan titik beku,  Tf. Untuk larutan encer penurunan titik beku akan sebanding dengan konsentrasi molal zat terlarut mB

 Tf = Kf mB … (7.7)

Tetapan kesebandingannya Kb khas untuk tiap pelarut dan disebut dengan penurunan titik beku molal.
Tabel 7.3 Kenaikan titik didih dan penurunan titik beku molal.

Di Tabel 7.3 beberapa nilai umum kenaikan titik didih dan penurunan titik beku molal diberikan. Dengan menggunakan nilai ini dan persamaan 7.6 dan 7.7 dimungkinkan untuk menentukan massa molar zat terlarut yang belum diketahui. Kini, penentuan massa molekul lebih mudah dilakukan dengan spektrometer massa. Sebelum spektrometer massa digunakan dengan rutin, massa molekul umumnya ditentukan dengan menggunakan kenaikan titik didih atau penurunan titik beku. Untuk kedua metoda, derajat kesalahan tertentu tak terhindarkan, dan keterampilan yang baik diperlukan agar didapatkan hasil yang akurat.
e. Tekanan osmosis
Membran berpori yang dapat dilalui pelarut tetapi zat terlarut tidak dapat melaluinya disebut dengan membran semipermeabel. Bila dua jenis larutan dipisahkan denga membran semipermeabel, pelarut akan bergerak dari sisi konsentrasi rendah ke sisi konsentrasi tinggi melalui membran. Fenomena ini disebut osmosis. Membran sel adalah contoh khas membran semipermeabel. Membran semipermeabel buatan juga tersedia.
Bila larutan dan pelarut dipisahkan membran semipermeabel, diperlukan tekanan yang cukup besar agar pelarut bergerak dari larutan ke pelarut. Tekanan ini disebut dengan tekanan osmosis. Tekanan osmosis larutan 22,4 dm3 pelarut dan 1 mol zat terlarut pada 0 °C adalah 1,1 x 105 N m-2.
Hubungan antara konsentrasi dan tekanan osmoisi diberikan oleh hukum van’t Hoff’s.

πV = nRT … (7.8)

π adalah tekanan osmosis, V volume, T temperatur absolut, n jumlah zat (mol) dan R gas. Anda dapat melihat kemiripan formal antara persamaan ini dan persamaan keadaan gas. Sebagaimana kasus dalam persamaan gas, dimungkinkan menentukan massa molekular zat terlarut dari hubungan ini.
f. Viskositas
Gaya tarik menarik antarmolekul yang besar dalam cairan menghasilkan viskositas yang tinggi. Koefisien viskositas didefinisikan sebagai hambatan pada aliran cairan. Gas juga memiliki viskositas, tetapi nilainya sangat kecil. Dalam kasus tertentu viskositas gas memiliki peran penting, misalnya dalam peawat terbang.
Viskositas
1.    Viskositas cairan yang partikelnya besar dan berbentuk tak teratur lebih tinggo daripada yang partikelnya kecil dan bentuknya teratur.
2.    Semakin tinggi suhu cairan, semakin kecil viskositasnya.
Dua poin ini dapat dijelaskan dengan teori kinetik. Tumbukan antara partikel yang berbentuk bola atau dekat dengan bentuk bola adalah tumbukan elastik atau hampir elastik. Namun, tumbukan antara partikel yang bentuknya tidak beraturan cenderung tidak elastik. Dalam tumbukan tidak elastik, sebagian energi translasi diubah menjadi energi vibrasi, dan akibatnya partikel menjadi lebih sukar bergerak dan cenderung berkoagulasi. Efek suhu mirip dengan efek suhu pada gas.
Koefisien viskositas juga kadang secara singkat disebut dengan viskositas dan diungkapkan dalam N s m-2 dalam satuan SI. Bila sebuah bola berjari-jari r bergerak dalam cairan dengan viskositas ηdengan kecepatan U, hambatan D terhadap bola tadi diungkapkan sebagai.

D = 6πhrU … (7.9)

Hubungan ini (hukum Stokes) ditemukan oleh fisikawan Inggris Gabriel Stokes (1819-1903).
g. Tegangan permukaan
Tegangan permukaan juga merupakan sifat fisik yang berhubungan dengan gaya antarmolekul dalam cairan dan didefinisikan sebagai hambatan peningkatan luas permukaan cairan. Awalnya tegangan permukaan didefinisikan pada antarmuka cairan dan gas. Namun, tegangan yang mirip juga ada pada antarmuka cairan-cairan, atau padatan dan gas. Tegangan semacam ini secara umum disebut dengan tegangan antarmuka. Tarikan antarmolekul dalam dua fas dan tegangan permukaan di antarmuka antara dua jenis partikel ini akan menurun bila tempeartur menurun. Tegangan antarmuka juga bergantung pada struktur zat yang terlibat. Molekul dalam cairan ditarik oleh molekul di sekitarnya secara homogen ke segala arah. Namun, molekul di permukaan hanya ditarik ke dalam oleh molekul yang di dalam dan dengan demikian luas permukaan cenderung berkurang. Inilah asal mula teori tegangan permukaan. Bentuk tetesan keringat maupun tetesan merkuri adalah akibat adanya tegangan permukaan.
Cairan naik dalam kapiler, fenomena kapiler, juga merupakan fenomena terkenal akibat adanya tegangan permukaan. Semakin besar tarikan antar molekul cairan dan kapilernya, semakin besar daya basah cairan. Bila gaya gravitasi pada cairan yang naik dan tarikan antara cairan dan dinding kapiler menjadi berimbang, kenaikan akan terhenti. Tegangan permukaan γ diungkapkan sebagai.

γ = rhdg/2 …. (7.10)

h adalah tinggi kenaikan cairan, r radius kapiler dan g percepatan gravitasi. Jadi, tegangan permukaan dapat ditentukan dengan percobaan.
7.2 Diagram fasa
Gambar 7.8 adalah diagram fasa zat tertentu. Tunjukkan fasa zat yang ada di daerah A, B, C dan H dan fasa yang ada di titik D, E, F dan G dan tunjukkan titik mana yang menyatakan titik tripel, titik didih normal, titik beku normal, dan titik kritis.

Gambar 7.8 Diagram fasa suatu senyawa.
Karena 88,00 g H2O melarutkan 0,1223 mol H2SO4, jumlah mol H2SO4 yang larut dalam 1 kg H2O, adalah 0,1223 mol x (1000 g kg–1)/(88,00 g) = 1,390 mol kg–1. Jadi konsentrasi asam sulfat encer tersebut 1,390 m.
Jumlah H2SO4 yang terlarut dalam 1 dm3 asam sulfat encer (molar) adalah 0,1223 mol x (1078 g dm–3)/(100 g) = 1,318 mol dm–3.
7.4 Hukum Raoult
Gliserin adalah cairan tidak mudah menguap. Larutan 164 g gliserin dan 338 cm3 H2O (kerapatan 0,992 g cm3) disimpan pada 39,8°C. Pada suhu ini, tekanan uap air murni adalah 54,74 torr. Hitung tekanan uap larutan ini.
7.5 Kenaikan titik didih
Bila 0,358 g sulfur dilarutkan dalam 21,5 g CS2, titik didihnya naik sebesar 0,151 K. Sarankan struktur sulfur dalam larutan.
7.6 Tekanan osmosis
Tekanan osmosis larutan dalam air (100 cm3) yang mengandung 0,36 g polimer adalah 3,26 x 102 Pa pada 23°C.
(1) tentukan massa molekul polimer ini.
(2) apakah akan praktis menentukan massa molekul polimer ini dengan metoda penurunan titik beku atau kenaikan titik didih?
Selingan-Es dan tekanan
Gambar kanan di Gambar 7.5 adalah perluasan diagram fasa pada 0°C, 1 atm. Bila tekanan diberikan pada titik ini, keadaan es (atau salju) bergerak vertikal mencapai titik y. Di titik ini air ada dalam fasa cair.
Keriangan ice-skating karena adanya kemiringan negatif pada garis fasa es-air. Tekanan yang dihasilkan oleh pisau sepatu peselancar akibat berat badannya akan melelehkan es dan menurunkan gaya gesek antara pisau dan es.

•    Pertanyaan dan jawaban Larutan

1.    Zat yang berperan seperti zat terlarut disebut ?
Jawab : zat terdispersi ( dispersoid )

2.    Salah satu sifat penting larutan ?
Jawab : tekanan uap cairan

3.    Interaksi antara molekul dalam tiap komponen larutan disebut ?
Jawab : larutan ideal

4.    Tetapan kesebandingan Kb khas untuk setiap pelarut disebut ?
Jawab : kenaikan titik didih molal

5.    Perbedaan antara titik beku larutan dan pelarut disebut ?
Jawab : penurunan titik beku


Selama ini pembahasan perubahan mutual antara tiga wujud materi difokuskan pada keadaan cair. Dengan kata lain, perhatian telah difokuskan pada perubahan cairan dan padatan, dan antara cairan dan gas. Dalam membahas keadaan kritis zat, akan lebih tepat menangani tiga wujud zat secara simultan, bukan membahas dua dari tiga wujud zat.

Gambar 7.5 Diagram fasa. Tm adalah titik leleh normal air, , T3 dan P3 adalah titik tripel, Tb adalah titik didih normal, Tc adalah temperatur kritis, Pc adalah tekanan kritis.
Kesetimbangan Fasa adalah suatu keadaan dimana suatu zat memiliki komposisi yang pasti pada kedua fasanya pada suhu dan tekanan tertentu, biasanya pada fasa cair dan uapnya.
Diagram fasa merupakan cara mudah untuk menampilkan wujud zat sebagai fungsi suhu dan tekanan. Sebagai contoh khas, diagram fasa air diberikan di Gambar 7.5. Dalam diagram fasa, diasumsikan bahwa zat tersebut diisolasi dengan baik dan tidak ada zat lain yang masuk atau keluar sistem.
Pemahaman Anda tentang diagram fasa akan terbantu dengan pemahaman hukum fasa Gibbs, hubungan yang diturunkan oleh fisikawan-matematik Amerika Josiah Willard Gibbs (1839-1903) di tahun 1876. Aturan ini menyatakan bahwa untuk kesetimbangan apapun dalam sistem tertutup, jumlah variabel bebas-disebut derajat kebebasan F- yang sama dengan jumlah komponen C ditambah 2 dikurangi jumlah fasa P, yakni,
F=C+2-P … (7.1)
Jadi, dalam titik tertentu di diagram fasa, jumlah derajat kebebasan adalah 2 – yakni suhu dan tekanan; bila dua fasa dalam kesetimbangan-sebagaimana ditunjukkan dengan garis yang membatasi daerah dua fasa hanya ada satu derajat kebebasan-bisa suhu atau tekanan. Pada ttik tripel ketika terdapat tiga fasa tidak ada derajat kebebasan lagi. Dari diagram fasa, Anda dapat mengkonfirmasi apa yang telah diketahui, dan lebih lanjut, Anda dapat mempelajari apa yang belum diketahui. Misalnya, kemiringan yang negatif pada perbatasan padatan-cairan memiliki implikasi penting sebagaimana dinyatakan di bagian kanan diagram, yakni bila tekanan diberikan pada es, es akan meleleh dan membentuk air. Berdasarkan prinsip Le Chatelier, bila sistem pada kesetimbangan diberi tekanan, kesetimbangan akan bergeser ke arah yang akan mengurangi perubahan ini. Hal ini berarti air memiliki volume yang lebih kecil, kerapatan leb besar daripada es; dan semua kita telah hafal dengan fakta bahwa s mengapung di air.
Sebaliknya, air pada tekanan 0,0060 atm berada sebagai cairan pada suhu rendah, sementara pada suhu 0,0098 °C, tiga wujud air akan ada bersama. Titik ini disebut titik tripel air. Tidak ada titik lain di mana tiga wujud air ada bersama.
Selain itu, titik kritis (untuk air, 218 atm, 374°C), yang telah Anda pelajari, juga ditunjukkan dalam diagram fasa. Bila cairan berubah menjadi fasa gas pada titik kritis, muncul keadaan antara (intermediate state), yakni keadaan antara cair dan gas. Dalam diagram fasa keadaan di atas titik kritis tidak didefinisikan.

Brikut ini merupakan dragma fasa berdasarkan jenisnya :
A. Dragma Fasa Binner

B. Dragma fasa Senyawa dengan Titik Lebur sebangun

C. Dragma Fasa Senyawa dengan Titik Lebur tak Sebangun


•    Pertanyaan dan jawaban Kesetimbanagn Fasa dan Dragma Fasa

1. Jelaskan definisi dari kesetimbangan fasa?
Jawab : Kesetimbangan fasa adalah suatu keadaan dimana suatu zat memiliki komposisi yang pasti pada kedua fasanya pada suhu dan tekanan tertentu, biasanya pada fasa cair dan uapnya.
2. Jelaskan fungsi dari dragma fasa!
Jawab : Cara yang mudah untuk menampilkan wujud zat sebagai fungsi suhu dan tekanan
3. Apa bunyi hokum fasa Gibbs!
Gibbs menyatakan bahwa untuk kesetimbangan apapun dalam sistem tertutup, jumlah variabel bebas-disebut derajat kebebasan F- yang sama dengan jumlah komponen C ditambah 2 dikurangi jumlah fasa P, yakni, F=C+2-P …
4. Apa yang dimaksu dengan prinsip Le Chatelier! Jelaskan !
Prinsip Le Chatelier adalah bila sistem pada kesetimbangan diberi tekanan, kesetimbangan akan bergeser ke arah yang akan mengurangi perubahan ini
5. Apa yang dimaksud denagn tripel air! Jelaskan !
Tripel air adalah di mana tiga wujud air ada bersamaan.

Translator

English French German Spain Italian Dutch

Russian Portuguese Japanese Korean Arabic Chinese Simplified
by : BTF

Stats

free counters

My Campus

Mengenai Kami

Kelompok 10 Teknik Industri Universitas Mercubuana

Assalamu'alaikum...
Perkenalkan, kami kelompok 10 Teknik Industri Universitas Mercubuana Tahun 2009.
Anggota kami :
1-Anton Giardhi B(41609010039)
2-Ahcmad Mathhuri(41609010036)
3-Eko Setiawan(41609010038)
4-Irfan Widiarto(41609010037)

Calendar


ShoutMix chat widget