Kelompok 10 Teknik Industri UMB

Thank You..... My Teacher!

Struktur banyak senyawa anorganik dapat dijelaskan dengan menggunakan teori VSEPR atau secara sederhana dengan teori valensi. Namun, beberapa senyawa anorganik yang tidak masuk dalam kelompok ini sangat penting baik dari sudut pandang teori maupun praktis. Beberapa senyawa ini akan didiskusikan di bawah ini.

AMONIA
Amonia NH3 seolah diturunkan dari metana dengan menggantikan atom karbon dengan atom nitrogen dan salah satu atom hidrogen dengan pasangan elektron bebas. Jadi, amonia memiliki seolah struktur tetrahedral. Namun untuk memahami struktur amonia, anda harus mempertimbangkan inversi atom nitrogen. Perilaku amonia sangat mirip dengan payung yang tertiup sehingga terbalik. Halangan inversinya hanya 5,8 kkal mol-1, dan inversi amonia pada suhu kamar sangat cepat (Gambar 4.10).


Secara prinsip, atom nitrogen dari amina yang mengikat tiga atom atau gugus yang berbeda dapat merupakan pusat asimetrik sebab nitrogen memiliki empat substituen termasuk pasangan elektron bebas. Namun karena adanya inversi ini, atom nitrogen tidak dapat menjadi pusat asimetrik..

DIBORAN
Diharapkan reaksi antara magnesium borida dan air akan menghasilkan boron trihidrida BH3. Namun, yang didapatkan adalah diboran B2H6. Nampaknya senyawa ini tidak dapat dijelaskan dengan teori valensi sederhana, dan banyak sekalai usaha telah dilakukan untuk mengelusidasi anomali ini.
Mg3B2 + 6H2O → 3Mg(OH)2 + B2H6 (4.1)
Kini telah dibuktikan bahwa senyawa ini memiliki struktur aneh sebagai beikut.








Kerangka molekulnya adalah jajaran genjang yang terbentuk dari dua atom boron dan dua atom hidrogen, dan atom hidrogen terikat pada dua atom boron disebut dengan hidrogen jembatan. Empat ikatan B-H terminal secara esensi terbentuk dari tumpang tindih orbital 1s hidrogen dan orbital hibrida boron. Sebaliknya, ikatan jembatan B—H—B adalah ikatan tiga pusat, dua elektron yang terbetuk dari hibidisasi hidrogen 1s dan dua orbital hibrida boron. Keberadaan ikatan seperti ini dikonfirmasi dengan mekanika kuantum.

SENYAWA GAS MULIA
Lama sekali dipercaya bahwa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa. Kimiawan Kanada Neil Bartlett (1932-) menemukan spesi ionik [O2]+[PtF6]- dengan mereaksikan oksigen dengan platina heksafluorida PtF6. Ia beranggapan reaksi yang mirip dengan ini yakni reaksi antara xenon dan PtF6 akan berlangsung karena energi ionisasi pertama xenon dekat nilainya dengan energi ionisasi perrtama molekul oksigen. Di tahun 1962 ia berhasil mendapatkan senyawa gas mulia pertama Xe(PtF6)x, (x = 1, 2).
Kemudian menjadi jelas bahwa gas mulia membentuk senyawa biner dengan oksigen dan fluorin yang keduanya memiliki keelektronegativan tinggi. XeF2 adalah molekul linear dengan kelebihan elektron, sementara XeF4 merupakan satu-satunya senyawa unsur berbentuk bujur sangkar. XeF6 berbentuk oktahedron terdistorsi, dan di dekat titik lelehnya, senyawa ini ada sebagai kristal [XeF5]+F-.
FEROSEN
Ferosen adalah senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom Fe dan senyawa ini merupakan contoh pertama kelompok senyawa yang disebut dengan senyawa sandwich (Gambar 4.12).

Di awal tahun 1950-an , rekasi antara siklopentadienilmagnesium bromida dan FeCl3 anhidrat dilakukan dengan harapan akan dihasilkan turuanan fulvalena. Namun, senyawa dengan struktur (C6H5)2Fe yang diperoleh. Struktur senyawa ini didapatkan sangat unik: delapan belas elektron, dua belas dari dua molekul siklopentadienil (masing-masing enam elektron) dan enam dari kulit terluar Fe. Jadi, konfigurasi elektron gas mulia dicapai dan kestabilannya kira-kira sepadan. Kedua cincin siklopentadienail berputar layaknya piringan CD musik.
 Struktur senyawa kompleks platina
Diamindikhloroplatina [PtCl2(NH3)2] memiliki struktur bujur sangkar. Prediksikan struktur isomer-isomernya yang mungkin.
Dua isomer, bentuk cis- dan trans, mungkin ada. Struktur bujur sangkar planar disebabkan oleh hibridisasi dsp2. Isomer cis merupakan obat antikanker yang terkenal.


 Stereoisomer gula
Senyawa yang memiliki empat atom karbon, HOCH2CHOHCHOHCHO, adalah gula yang kesederhanaanya sebanding dengan gliseraldehida.




 Stereoisomer gula
Glukosa, HOCH2(CHOH)4CHO, memiliki enam atom karbon dan merupakan salah satu senawa alam yang berlimpah.
Struktur delapan isomer ditunjukkan di bawah ini.



Bagi masing-masing isomer di atas, anda dapat menggambarkan pasangan enantiomernya sebagai berikut:



 Analisis konformasional konformer
Dalam kasus 1,2-dikhloroetana, bentuk trans lebih stabil daripada bentuk gauche. Di pihak lain, dalam kasus etilen glikol (1,2-etanadiol; digunakan secara luas sebagai cairan antibeku) bentuk gauche lebih stabil daripada bentuk trans walaupun struktur molekulnya sangat mirip dengan 1,2dikhloroetana. Jelaskan.
Dalam bentuk gauche etilen glikol ikatan hidrogen intramolekul akan terjadi dan menstabilkan struktur. Ikatan semacam ini tidak ada dalam bentuk trans.



Bentuk gauche Bentuk trans
ikatan dalam diboran Jelaskan ikatan dalam diboran. Jawab: lihat teks halaman.

Selingan — Senyawa dengan struktur yang menarik
Terdapat sejumlah senyawa organik dengan struktur menarik dan unik. Contoh yang baik adalah kuban C8H8 dengan struktur yang hampir kubus. Walaupun banyak teknik telah dicoba, molekul tetrahedral, tetrahedran C8H8, belum pernah disintesis. Sudut ikatan ∠C-C-C terlalu berbeda dari sudut tetrahedral normal, dan mungkin inilah alasan mengapa sintesisnya belum dapat dilakukan.



kuban tetrahedran
demi kesederhanaan label atom dan ikatan C-H tidak digambarkan
Deret lain senyawa dengan struktur menarik dan aneh adalah katenan, cincin molekul yang penuh teka-teki. Bagaimana dua cincin saling mengait walaupun tidak ada ikatan antar keduanya. Bagaimana kimiawan dapat mensintesis senyawa semacam ini? Sungguhh ini merupakan prestasi pakung gemilang yang dicapai kimia organik sintetik.



Gambar skematik katenan
Sejak penemuannya di akhir abad 20, fuleren C60 telah menarik perhatian baik kimiawan teoritis maupun praktis. Bolanya dibentuk oleh kombinasi heksagon dan pentagon, dan sungguh sangat mirip dengan bola sepak. Menarik untuk dicatat bahwa keberadaan fulerene telah diprediksikan jauh sebelumnya oleh kimiawan Jepang Eiji Osawa.



padangan stereo fulleren
latihan :

1.    berapa mol halangan inversinya dari ammonia ?
jawab : hanya 5,8 kkal mol-1.

2.    reaksi antara magnesium borida dan air akan menghasilkan boron trihidrad BH3 adalah ?
      jawab : boron B2H6.

3.    Atom hydrogen terikat pada dua atom boron disebut ?
Jawab : hydrogen jembatan.

4.    deret lain senyawa dengan struktur menarik dan aneh adalah ?
jawab : katenan.

5.    senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom FE di sebut ?
jawab : senyawa sandwich.

a. Keisomeran karena atom karbon asimetrik, keisomeran optik


Sebelum ada teori valensi, kimiawan/fisiologis Perancis Louis Pasteur (1822-1895) telah mengenali pengaruh struktur molekul individual pada sifat gabungan molekul. Ia berhasil memisahkan asam rasemat tartarat (sebenarnya garam natrium amonium) menjadi (+) dan (-) berdasarkan arah muka hemihedral kristalnya (1848).
Kedua senyawa memiliki sifat fisika (misalnya titik leleh) dan kimia yang sama, tetapi ada perbedaan dalam sifat optik dalam larutan masing-masing senyawa. Keduanya memutar bidang polarisasi cahaya, dengan kata lain mempunyai keaktifan optik. Rotasi jenis kedua senyawa, yang mengkur kekuatan rotasi kedua senyawa, memiliki nilai absolut yang sama, namun tandanya berlawanan. Karena molekul berada bebas dalam larutan, perbedaan ini tidak dapat dijelaskan karena perbedaan struktur kristal. Sayangnya waktu itu, walaupun teori atom sudah ada, teori valensi belum ada. Dengan kondisi seperti ini Pasteur tidak dapat menjelaskan penemuannya.
Di tahun 1860-an, kimiawan Jerman Johannes Adolf Wislicenus (1835-1902) menemukan bahwa dua jenis asam laktat yang diketahui itu keduanya adalah asam α-hidroksipropanoat CH3CH(OH)COOH, bukan asam β- hidroksipropanoat HOCH2CH2COOH. Ia lebih lanjut menyarankan bahwa konsep baru untuk stereoisomer harus dibuat untuk menjelaskna fenomena ini. Konse baru ini menyatakan bahwa kedua senyawa yang memiliki rumus struktur yang sama dalam dua dimensu dapat menjadi stereoisomer bila susunan atom-atomnya di ruang berbeda.
Di tahun 1874, van’t Hoff dan Le Bel secara independen mengusulkan teori atom karbon tetrahedral. Menurut teori ini, kedua asam laktat yang dapat digambarkan di Gambar 4.4. Salah satu asam laktat adalah bayangan cermin asam laktat satunya. Dengan kata lain, hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri, dan oleh karena itu disebut dengan antipoda atau enantiomer. Berkat teori van’t Hoff dan Le Bel, bidang kimia baru, stereokimia, berkembang dengan cepat.


(+)-asam laktat (-)-lactic acid
Gambar 4.4 Stereoisomer asam laktat.
Kedua isomer atau antipoda, berhubungan layaknya tangan kanan dan kiri
Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat. Atom karbon semacam ini disebut dengan atom karbon asimetrik. Umumnya, jumlah stereoisomer akan sebanyak 2n, n adalah jumlah atom karbon asimetrik. Asam tartarat memiliki dua atom karbon asimetrik. Namun, karena keberadaan simetri molekul, jumlah stereoisomernya kurang dari 2n, dan lagi salah satu stereoisomer secara optik tidak aktif (Gambar 4.5). Semua fenomena ini dapat secara konsisten dijelaskan dengan teori atom karbon tetrahedral.



(+)-asam tartarat (-)-asam tartarat meso-asam tartarat
Gambar 4.5 Stereoisomer asam tartarat(+)-asam tartarat dan (-)-asam tartarat membentuk pasangan enantiomer.
Namun karena adanya simetri, meso-asam tartarat secara optik tidak aktif.


b. Isomer geometri
Van’t Hoff menjelaskan keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik. Isomer jenis ini disebut dengan isomer geometri. Dalam bentuk trans subtituennya (dalam kasus asam fumarat dan maleat, gugus karboksil) terletak di sisi yang berbeda dari ikatan rangkap, sementara dalam isomer cis-nya subtituennya terletak di sisi yang sama.
Dari dua isomer yang diisoasi, van’t Hoff menamai isomer yang mudah melepaskan air menjadi anhidrida maleat isomer cis sebab dalam isomer cis kedua gugus karboksi dekat satu sama lain. Dengan pemanasan sampai 300 °C, asam fuarat berubah menjadi anhidrida maleat. Hal ini cukup logis karena prosesnya harus melibatkan isomerisasi cis-trans yang merupakan proses dengan galangan energi yang cukup tinggi (Gambar 4.6).
Karena beberapa pasangan isomer geometri telah diketahui, teori isomer geometri memberikan dukunagn yang baik bagi teori struktural van’t Hoff.



asam fumarat asam maleat anhidrida maleat
Gambar 4.6 Isomer geometri asam maleat (bentuk cis) mempunyai dua gugus karboksil yang dekat, dan mudah melepas air menjadi anhidrida (anhidrida maleat).
Dan pada kasus yang kedua akan ada isomer geometri.



 Struktur benzen
Struktur benzen menjadi enigma beberapa tahun. Di tahun 1865, Kekulé mengusulkan struktur siklik planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian. Strukturnya disebut dengan struktur Kekulé. Bukti struktur semacam ini datang dari jumlah isomer benzen tersubstitusi. Dengan struktur Kekulé, akan ada tiga isomer kresol, yakni, o, m- dan p-kresol (Gambar 4.7).




Struktur Kekulé tidak dapat menyelesaikan semua masalah yang berkaitan dengan struktur benzene. Bila benzene memiliki struktur seperti yang diusulkan Kekulé, akan ada dua isomer okresol, yang tidak diamati. Kekulé mempostulatkan bahwa ada kesetimbangan cepat, yang disebut dengan resonansi antara kedua struktur. Istilah resonansi kemudian digunakan dalam mekanika kuantum.

d. Struktur etana: analisis konformasional
Teori atom karbon tetrahedral dan struktur benzene memberikan fondasi teori struktur senyawa organik. Namun, van’t Hoff dan kimiawan lain mengenali bahwa masih ada masalah yang tersisa dan tidak dapat dijelaskan dengan teori karbon tetrahedral. Masalah itu adalah keisomeran yang disebabkan oleh adanya rotasi di sekitar ikatan tunggal.
Bila rotasi di sekitar ikatan C-C dalam 1,2-dikhloroetana CH2ClCH2Cl terbatas sebagaimana dalam kasus asam fumarat dan maleat, maka akan didapati banyak sekali isomer. Walaupun van’t Hoff awalnya menganggap adanya kemungkinan seperti itu, ia akhirnya menyimpulkan bahwa rotasinya bebas (rotasi bebas) karena tidak didapati isomer rotasional akibat batasan rotasi tersebut. Ia menambahkan bahwa struktur yang diamati adalah rata-rata dari semua struktur yang mungkin.
Di tahun 1930-an dibuktikan dengan teori dan percobaan bahwa rotasi di sekitar ikatan tunggal tidak sepenuhnya bebas. Dalam kasus etana, tolakan antara atom hidrogen yang terikat di atom karbon dekatnya akan membentuk halangan bagi rotasi bebas, dan besarnya tolakan akan bervariasi ketika rotasi tersebut berlangsung. Gambar 4.8(a) adalah proyeksi Newman etana, dan Gambar 4.8(b) adalah plot energi-sudut torsi.



Gambar 4.8 Analisis konformasional.
Dalam gambar (a) (proyeksi Newman), Anda dapat melihat molekul di arah ikatan C-C. Atom karbon depan dinyatakan dengan titik potong tiga garis pendek (masing-masing mewakili ikatan CH) sementara lingkaran mewakili arom karbon yang belakang. Keseluruhan gambar akan berkaitan dengan proyeksi molekul di dinding di belakangnya. Demi kesederhanaan atom hidrogennya tidak digambarkan (b) Bila sudut orsinya 0°, 120°, 240° dan 360°, bagian belakang molekul “berimpitan” eclipsed dengan bagian depan. Bila anda menggambarkan proyeksi Newman dengan tepat berimpit, anda sama sekali tidak dapat melihat bagian belakang. Secara konvensi, bagian belakang diputar sedikit agar dapat dilihat.
Bila sudut rotasi (sudut torsi) 0°, 60°, 120° dan 180°, energi molekul kalau tidak maksimum akan minimum. Struktur (konformasi) dengan sudut torsi 0° atau 120° disebut dengan bentuk eklips, dan konformasi dengan sudut torsi 60°atau 180° disebut bentuk staggered. Studi perubahan >struktur molekular yang diakibatkan oleh rotasi di sekitar ikatan tunggal disebut dengan analisis konformasional. Analisis ini telah berkembang sejak tahun 1950-an hingga kini.
Analisis konformasional butana CH3CH2CH2CH3 atas rotasi di sekitar ikatan C-C pusat, mengungkapkan bahwa ada dua bentuk staggered. Bentuk trans, dengan dua gugus metil terminal di sisi yang berlawanan, berenergi 0,7 kkal mol–1 lebih rendah (lebih stabil) daripada isomer gauche yang dua gugus metilnya berdekatan.
Hasil ini dapat diperluas ke senyawa-senyawa semacam pentana dan heksana yang memiliki lingkungan metilena tambahan, dan akhirnya pada poloetilena yang dibentuk oleh sejumlah besar metilen yang terikat. Dalam semua analisis ini, struktur trans, yakni struktur zig zag, adalah yang paling stabil. Namun, ini hanya benar dalam larutan. Untuk wujud padatnya faktor lain harus ikut diperhatikan.
hibridisasi atom karbon yang terlibat. Bila banyak konformasi dimungkinkan oleh adanya rotasi di sekitar ikatan tunggal, konformasi yang paling stabil akan dipilih.
Bila molekulnya memiliki sisi polar, faktor lain mungkin akan terlibat. Interaksi tarik menarik antara sisi positif dan negatif akan mengakibatkan struktur dengan halangan sterik terbesar lebih stabil. Dalam kasus asam salisilat, ikatan hidrogen antara gugus hidroksi dan karboksi akan membuat struktur yang lebih rapat lebih stabil



1.    Perbedaan dalam sifat optik dalam larutan masing2 senyawa, ke duanya memutar bidang polarisasi cahaya disebut ?
Jawab : keaktifan optik
2.    hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri di sebut?
Jawab : antipoda atau enantiomer
3.    atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat disebut ?
jawab : atom karbon asimetrik
4.    keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda di sebut ?
jawab : isomergeometri
5.    struktur siklir planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian di sebut ?
jawab : struktur kekule.

a. Teori tolakan pasangan elektron valensi

Di tahuan 1940, Sidgwick mengusulkan teori yang disebut dengan Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)] Definisi dari teori ini adalah jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul. Terdapat gaya tolak elektrostatik antara dua pasangan elektron yang cenderung menolak orbital atom sejauh mungkin satu sama lain. Karena pasangan elektron menempati orbital atom, pasangan elektron bebas juga mempunyai dampak yang sama dengan pasangan elektron ikatan. Dengan kata lain, pasangan elektron bebas dan pasangan elektron ikatan juga tolak menolak sejauh mungkin.

SENYAWA DENGAN ATOM PUSAT DIVALEN
Menurut teori VSEPR, dua pasangan elektron yang dimiliki atom pusat divalen akan terpisah sejauh mungkin bila sudut ikatannya 180°. Dengan kata lain, molekulnya akan memiliki struktur linear. Faktanya, berilium khlorida BeCl2, dengan atom pusat divalen, adalah molekul linear . Seperti akan didiskusikan kemudian, beberapa senyawa seperti karbon dioksida O=C=O dan alena H2C=C=CH2 juga linear seolah memiliki atom pusat divalen.

SENYAWA DENGAN ATOM PUSAT TRIVALEN
Bila teori VSEPR berlaku juga untuk senyawa dengan atom pusat trivalen seperti boron trikhlorida BCl3, sudut ikatan ∠Cl-B-Cl akan bernilai 120° dengan emapt atom itu berada dalam bidang yang sama. Struktur trigonal planar juga diamati di timah khlorida, SnCl3. Catat juga bahwa struktur segitiga juga diamati di etilena H2C=CH2, ion nitrat NO3 dan sulfur dioksida SO2.

SENYAWA DENGAN ATOM PUSAT TETRAVALEN
Teori karbon tetrahedral diusulkan oleh kimiawan Belanda Jacobus Henricus van’t Hoff (18521911) dan kimiawan Perancis Joseph Achille Le Bel (1847-1930), yang menyempurnakan teorinya hampir pada saat yang bersamaan. Kesimpulan yang sama juga dapat secara otomatis didapatkan dari teori VSEPR. Misalnya untuk metana, struktur yang akan memiliki tolakan antar pasangan elektron yang minimal didapatkan untuk geometri tetrahedron dengan sudut 109,5°, yang jelas lebih besar dari bujur sangakar yang bersudut 90°. Menariknya ion amonium NH4+dengan atom nitrogen sebagai atom pusat juga tetrahedral seperti metana. Bila pasangan elektron bebas juga dihitung, atom nitrogen dari amonia NH3 dan atom oksigen dalam air H2O juga dapat dianggap
tetravalen. Namun di molekul-molekul ini tidak didapat tetrahedral sempurna, sudut ikatan ∠HNH adalah 106° dan ∠H-O-H adalah 104,5°. Fakta ini menyarankan hubungan kualitatif berikut.
Kekuatan relatif tolakan
Pasangan elektron bebas (PEB)-PEB > PEB- Pasangan elektron ikatan (PEI) > PEI-PEI Beberapa ion poliatomik semacam SO42- dan SO32- juga memiliki struktur tetrahedral.

SENYAWA DENGAN VALENSI LEBIH TINGGI DARI EMPAT
Struktur senyawa dengan atom pusat memiliki valensi lebih besar dari empat juga dapat dijelaskan dengan teori VSEPR. Senyawa pentavalen memiliki struktur trigonal bipiramidal. Senyawa khas jenis ini adalah fosfor pentakhlorida PCl5. Senyawa dengan atom pusat heksavalen berstruktur oktahedral, yang identik dengan bujur sangkar bipiramid. Contoh yang baik adalah belerang heksafluorida SF6. Dalam kasus senyawa heptavalen, situasinya sama dan strukturnya adalah pentagonal bipiramid.
Ketika menggunakan teori ini, dalam senyawa yang strukturnya ditentukan pasangan elektron bebas harus diikutsertakan sebagai bagian pasangan elekron yang menentukan struktur. Misalnya untuk IF5 dan ICl4 hal ini sangat penting. Di Gambar 4.1 ditunjukkan beberapa struktur senyawa khas.


b. Hibridisasi orbital atom
Diharapkan bahwa berilium khlorida BeCl2 dan timah (II) khlorida SnCl2 akan memiliki struktur yang mirip karena memiliki rumus molekul yang mirip. Namun, ternyata senyawa pertama berstruktur linear sedang yang kedua bengkok. Hal ini dapat dijelaskan dengan perbedaan orbital atom yang digunakan. Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital. Menurut prinsip Pauli, tidak ada elektron yang memiliki satu set bilangan kuantum yang tepat sama (Bab 2.4 (d)). Masalah yang timbul adalah akan diletakkan di mana elektron ke-empat atom karbon. Telah ditetapkan bahwa konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2) (Gambar 4.2).


Sebagaimana didiskusikan di atas, baik teori VSEPR maupun hibridisasi orbital atom akan memberikan kesimpulan struktur molekul dan ion yang sama. Walaupun teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.

•    Pertanyaan dan jawaban mengenai Struktur Molekul Sederhana

1. Apa dasar paparan dari Struktur Molekul Sederhana? Jelaskan!
Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah. Sebaliknya, ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah. Jadi bentuk molekul ditentukan oleh sudut dua ikatan, yang kemudian ditentukan oleh orbital atom yang terlibat dalam ikatan.
2. Jelaskan definisi dari Teori tolakan pasangan elektron valensi!
Definisinya : jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul.
3. Ada berapa macam cara dari Teori tolakan pasangan elektron valensi? Sebutkan!
Teori tolakan pasangan elektron valensi mempunyai 4 macam cara :
•    Senyawa denagn atom pusat divalent
•    Senyawa dengan atom pusat trivalent
•    Senyawa dengan atom pusat tetravalent
•    Senyawa dengan valensi lebih tinggi dari empat
4. Jelaskan definisi dari Hibridasi Orbital Atom!
Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital.
5. Jelaskan persamaan dan perbedaan antara Teori tolakan pasangan elektron valensi dengan Teori Hibridasi Orbital Atom!
teori VSEPR maupun hibridisasi orbital atom mempunyai persamaan yaitu akan memberikan kesimpulan struktur molekul dan ion yang sama. Dan perbedaannya yaitu  teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.

Berdasarkan perubahan konfigurasi elektron yang terjadi pada pembentukan ikatan, maka ikatan kimia dibedakan menjadi 4 yaitu : ikatan ion, ikatan kovalen, ikatan kovalen koordinat / koordinasi / dativ dan ikatan logam.

Pada bab ini akan dibahas Ikatan Kimia Lain yang termasuk pada Ikatan Kimia, antara lain Ikatan Hidrogen, Ikatan Van Der Waals, dan Ikatan Pisang.

A- Ikatan Hidrogen
ikatan hidrogen adalah sejenis gaya tarik antarmolekul yang terjadi antara dua muatan listrik parsial dengan polaritas yang berlawanan. Walaupun lebih kuat dari kebanyakan gaya antarmolekul, ikatan hidrogen jauh lebih lemah dari ikatan kovalen dan ikatan ion. Dalam makromolekul seperti protein dan asam nukleat, ikatan ini dapat terjadi antara dua bagian dari molekul yang sama. dan berperan sebagai penentu bentuk molekul keseluruhan yang penting.
Ikatan hidrogen terjadi ketika sebuah molekul memiliki atom N, O, atau F yang mempunyai pasangan elektron bebas (lone pair electron). Hidrogen dari molekul lain akan berinteraksi dengan pasangan elektron bebas ini membentuk suatu ikatan hidrogen dengan besar ikatan bervariasi mulai dari yang lemah (1-2 kJ mol-1) hingga tinggi (>155 kJ mol-1).
Kekuatan ikatan hidrogen ini dipengaruhi oleh perbedaan elektronegativitas antara atom-atom dalam molekul tersebut. Semakin besar perbedaannya, semakin besar ikatan hidrogen yang terbentuk.
Ikatan hidrogen mempengaruhi titik didih suatu senyawa. Semakin besar ikatan hidrogennya, semakin tinggi titik didihnya. Namun, khusus pada air (H2O), terjadi dua ikatan hidrogen pada tiap molekulnya. Akibatnya jumlah total ikatan hidrogennya lebih besar daripada asam florida (HF) yang seharusnya memiliki ikatan hidrogen terbesar (karena paling tinggi perbedaan elektronegativitasnya) sehingga titik didih air lebih tinggi daripada asam florida.
B- Ikatan Van Der Waals
Gas mempunyal sifat bentuk dan volumenya dapat berubah sesuai tempatnya. Jarak antara molekul-molekul gas relatif jauh dan gaya tarik menariknya sangat lemah. Pada penurunan suhu, fasa gas dapat berubah menjadi fasa cair atau padat. Pada keadaan ini jarak antara molekul-molekulnya menjadi lebih dekat dan gaya tarik menariknya relatif lebih kuat. Gaya tarik menarik antara molekul-molekul yang berdekatan ini disebut gaya Van der walls.

C- Ikatan Pisang
Ikatan pisang adalah istilah dalam kimia organik yang merujuk pada sejenis ikatan kimia kovalen yang geometri ikatannya melengkung menyerupai pisang.

Secara garis beras Ikatan kimia terbagi atas :
(Ikatan Kimia "Kuat")
- Ikatan kovalen & Antiikat
•    Ikatan sigma: 3c-2e  • Ikatan pisang  • 3c-4e (Ikatan hidrogen, Ikatan dihidrogen, Interaksi agostik) • 4c-2e
•    Ikatan pi: Pengikatan balik π • Konjugasi • Hiperkonjugasi • Aromatisitas • Aromatisitas logam
•    Ikatan delta: Ikatan rangkap empat • Ikatan rangkap lima • Ikatan rangkap enam
•    Ikatan dipolar • Haptisitas
- Ikatan ion
•    Interaksi kation-pi • Jembatan garam
- Ikatan logam
•    Aromatisitas logam
(Ikatan Kimia "Lemah")
- Ikatan hidrogen
•    Kompleks dihidrogen
•    Ikatan Hidrogen
•    Ikatan hidrogen sawar rendah
•    Ikatan hidrogen simetris
•    Hidrofil
- Nonkovalen lain
•    Gaya van der Waals
•    Ikatan mekanis
•    Ikatan halogen
•    Aurofilisitas
•    Interkalasi
•    Penumpukan
•    Gaya entropik
•    Polaritas kimia
- lainnya   
•    Ikatan disulfida
•    Ikatan peptida
•    Ikatan fosfodiester
(Catatan: ikatan kuat yang paling lemah tidak seperlunya lebih kuat dari ikatan lemah yang paling kuat)

•    Pertanyaan dan jawaban mengenai Jenis Ikatan Kimia.

1. Ada berapa macam jenis Ikatan Kimia? Sebutkan!
Jenis Ikatan Kimia terbagi atas dua macam yaitu : Ikatan Kimia Kuat dan Ikatan Kimia Lemah.
2. Jelaskan definisi dari Ikatan Kimia hidrogen!
Ikatan Kimia Hidrogen : sejenis gaya tarik antarmolekul yang terjadi antara dua muatan listrik parsial dengan polaritas yang berlawanan.
3. Jelaskan definisi dari Ikatan Kimia Van Der Walls!
Ikata Kimia Van Der Walls : Gaya tarik menarik antara molekul-molekul yang berdekatan.
4. Sebutkan yang termasuk dari Ikatan Kimia Kuat!
Ikatan Ionik, Ikatan Kovalen, dan Ikatan Logam.
5. Sebutkan yang termasuk ari Ikatan Kimia Lemah!
Ikatan Nonkovalen, IkatanHidrogen, Ikatan Disulfida, Ikatan Peptisida, dan Ikatan Fosfodiester.


Teori Kuantum Ikatan Kimia

a. Metoda Heitler dan London
Sebagaimana dipaparkan di bagian 2.3, teori Bohr, walaupun merupakan model revolusioner, namun gagal menjelaskna mengapa atom membentuk ikatan. Teori Lewis-Langmuir tentang ikatan kovalen sebenarnya kualitatif, dan gagal memberikan jawaban pada pertanyaan fundamental mengapa atom membentuk ikatan, atau mengapa molekul lebih stabil daripada dua atom yang membentuknya.
Masalah ini diselesaikan dengan menggunakan mekanika kuantum (mekanika gelombang). Segera setelah mekanika kuantum dikenalkan, fisikawan Jerman Walter Heitler (1904-1981) dan fisikawan Jerman/Amerika Fritz London (1900-1954) berhasil menjelaskan pembentukan molekul hidrogen dengan penyelesaian persamaan gelombang sistem yang terdiri atas dua atom hidrogen dengan pendekatan. Sistemnya adalah dua proton dan dua elektron (gambar 3.5(a)). Mereka menghitung energi sistem sebagai fungsi jarak antar atom dan mendapatkan bahwa ada lembah dalam yang berkaitan dengan energi minimum yang diamati dalam percobaan (yakni pada jarak ikatan) tidak dihasilkan. Mereka mengambil pendekatan lain: mereka menganggap sistem dengan elektron yang posisinya dipertukarkan (gambar 3.5(b)), dan menghitung ulang dengan asumsi bahwa dua sistem harus menyumbang sama pada pembentukan ikatan. Mereka mendapatkan kemungkinan pembentukan ikatan meningkat, dan hasil yang sama dengan hasil percobaan diperoleh.

Metoda Heitler dan London adalah yang pertama berhasil menjelaskan dengan kuantitatif ikatan kovalen. Metoda ini memiliki potensi untuk menjelaskan tidak hanya ikatan yang terbentuk dalam molekul hidroegn, tetapi ikatan kimia secara umum.

b. Pendekatan ikatan valensi
Marilah kita perhatikan metoda Heitler dan London dengan detail. Bila dua atom hidrogen dalam keadaan dasar pada jarak tak hingga satu sama lain, fungsi gelombang sistemnya adalah 1s1(1)1s2(2) (yang berkaitan dengan keadaan dengan elektron 1 berkaitan dengan proton 1 dan elektron 2 berhubungan dengan proton 2 sebagaimana diperlihtakna di gambar 3.5(a) (atau 1s1(2)1s2(1) yang berkaitan dengan keadaan dimana elektron 2 terikat di proton 1 dan elektron 1 berikatan dengan proton 2 sebagaimana diperlihatkan gambar 3.5(b)). Bila dua proton mendekat, menjadi sukar untuk membedakan dua proton. Dalam kasus ini, sistemnya dapat didekati dengan mudah kombinasi linear dua fungsi gelombang. Jadi,

Ψ+ = N+[]1s1(1)1s2(2) +1s1(2)1s2(1)[] (3.1)
Ψ-= N-[]1s1(1)1s2(2) – 1s1(2)1s2(1)[] (3.2)

dengan N+ dan N- adalah konstanta yang menormalisasi fungsi gelombangnya. Dengan menyelesaikan persamaan ini, akan diperoleh nilai eigen E+ dan E- yang berkaitan dengan gambar. 3.6(a) dan 3.6(b).
Metoda yang dipaparkan di atas disebut dengan metoda ikatan valensi (valence-bond/VB). Premis metoda VB adalah molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul. Bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel, ikatan yang stabil akan terbentuk.


c. Pendekatan orbital molekul
Metoda VB dikembangkan lebih lanjut oleh ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994). Namun, kini metoda orbital molekul (molecular orbital, MO) jauh lebih populer.

Orbital ini melingkupi seluruh molekul, dan disebut dengan fungsi orbital molekul, atau secara singkat orbital molekul. Seperti juga, orbital satu elektron untuk atom disebut dengan fungsi orbital atom atau secara singkat orbital atom. Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom disebut dengan kombinasi linear orbital atom (linear combination of atomic orbital, LCAO).

•    Pertanyaan dan jawaban mengenai Teori Kuantum Ikatan Kimia

1. Jelaskan definisi dari Teori Kuantum Ikatan Kimia dengan Metoda Heitler dan London!
Adalah yang pertama berhasil menjelaskan dengan kuantitatif ikatan kovalen. Metoda ini memiliki potensi untuk menjelaskan tidak hanya ikatan yang terbentuk dalam molekul hidroegn, tetapi ikatan kimia secara umum.
2. Jelaskan definisi dari Teori Kuantum Ikatan Kimia dengan Pendekatan Ikatan Valensi!
Definisinya yaitu : molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul. Bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel, ikatan yang stabil akan terbentuk.
3. Jelaskan definisi dari Teori Kuantum Ikatan Kimia dengan Pendekatan Orbital Molekul!
Definisinya yaitu : Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom disebut dengan kombinasi linear orbital atom (linear combination of atomic orbital, LCAO
4. Siapa ilmuan yang menemukan Teori dengan Pendekatan Orbital Molekul!
Yang mengangkat teori Pendekatan Orbital Molekul yaitu ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994).
5. Apa yang di maksud Orbital!
Orbital maksudnya adalah : garis electron yang mengelilingi sebuah atom (fungsi atom)

Translator

English French German Spain Italian Dutch

Russian Portuguese Japanese Korean Arabic Chinese Simplified
by : BTF

Stats

free counters

My Campus

Mengenai Kami

Kelompok 10 Teknik Industri Universitas Mercubuana

Assalamu'alaikum...
Perkenalkan, kami kelompok 10 Teknik Industri Universitas Mercubuana Tahun 2009.
Anggota kami :
1-Anton Giardhi B(41609010039)
2-Ahcmad Mathhuri(41609010036)
3-Eko Setiawan(41609010038)
4-Irfan Widiarto(41609010037)

Calendar


ShoutMix chat widget