Kelompok 10 Teknik Industri UMB

Thank You..... My Teacher!

Assalamu'alaikum...
Perkenalkan, kami kelompok 10 Teknik Industri Universitas Mercubuana Tahun 2009.
Anggota kami : 1-Ahmad Mathhuri                  (41609010036)
                        2-Eko Setiawan                     (41609010038)
                        3-Irfan Widranto                     (41609010037)
                        4-Anton Giardhi Bramanto      (41609010039)



Pertnyaan 1 Teori Bohr

Hitung energi yang diserap oleh elektron yang tereksitasi dari (n= 1) ke (n = 3). Tentukan panjang gelombang radiasi elektromagnetik yang berkaitan. Teori Bohr mengasumsikan energi elektron atom hidrogen adalah -2,718 x 10–18/n2 (J)?
1.1 Jawab: Energinya dapat dihitung dengan persamaan (2.9).

Hubungan antara frekuensi dan panjang gelombang elektromagnetik ν= c/λ. Jadi  E = hc/λ, panjang gelombang dapat diperoleh sebagai berikut:




Pertanyaan 2 Teori Bohr
Hitung jumlah energi yang diperlukan untuk memindahkan elektron dari atom hidrogen yang dieksitasi dari (n=2)?
2.2 Jawab:


Pertanyaan 3. Persamaan De Broglie
Hitung panjang gelombang yang berkaitan dengan elektron (m= 9,11 x 10-31 kg) yang bergerak dengan kecepatan 5,31x 106 m s-1.?
2.3 Jawab


Prtanyaan 4. Potensial kotak satu dimensi
Elektron dijebak dalam kotak satu dimensi dengan lebar 0,3 nm. Tentukan tingkat energinya. Hitung frekuensi dan panjang gelombang bila elektron berpindah dari (n = 2) ke (n = 1).?
2.4 Jawab:

Frekuensi dan panjang gelombang elektronnya adalah:




Pertanyaan 5. Prinsip ketidakpastian
Posisi elektron dalam atom akan ditentukan dengan ketepatan sampai 0,02 nm. Perkirakan ketidakpastian yang berkaitan dengan kecepatan elektronnya?
2.5 Jawab:





a. Sifat gelombang partikel

Di paruh pertama abad 20, mulai diketahui bahwa gelombang elektromagnetik, yang sebelumnya dianggap gelombang murni, berperilaku seperti partikel (foton). Fisikawan Perancis Louis Victor De Broglie (1892-1987) mengasumsikan bahwa sebaliknya mungkin juga benar, yakni materi juga berperilaku seperti gelombang. Berawal dari persamaan Einstein, E = cp dengan p adalah momentum foton, c kecepatan cahaya dan E adalah energi, ia mendapatkan hubungan:
E = hν =ν = c/λ atau hc/ λ = E, maka h/ λ= p … (2.12)
b. Prinsip ketidakpastian
Dari yang telah dipelajari tentang gelombang materi, kita dapat mengamati bahwa kehati-hatian harus diberikan bila teori dunia makroskopik akan diterapkan di dunia mikroskopik. Fisikawan Jerman Werner Karl Heisenberg (1901-1976) menyatakan tidak mungkin menentukan secara akurat posisi dan momentum secara simultan partikel yang sangat kecil semacam elektron. Untuk mengamati partikel, seseorang harus meradiasi partikel dengan cahaya. Tumbukan antara partikel dengan foton akan mengubah posisi dan momentum partikel.
Heisenberg menjelaskan bahwa hasil kali antara ketidakpastian posisi  x dan ketidakpastian momentum  p akan bernilai sekitar konstanta Planck:
 x p = h (2.13)
Hubungan ini disebut dengan prinsip ketidakpastian Heisenberg.
c. Persamaan Schrödinger
Fisikawan Austria Erwin Schrödinger (1887-1961) mengusulkan ide bahwa persamaan De Broglie dapat diterapkan tidak hanya untuk gerakan bebas partikel, tetapi juga pada gerakan yang terikat seperti elektron dalam atom. Dengan memperuas ide ini, ia merumuskan sistem mekanika gelombang. Pada saat yang sama Heisenberg mengembangkan sistem mekanika matriks. Kemudian hari kedua sistem ini disatukan dalam mekanika kuantum.
Dalam mekanika kuantum, keadaan sistem dideskripsikan dengan fungsi gelombang. Schrödinger mendasarkan teorinya pada ide bahwa energi total sistem, E dapat diperkirakan dengan menyelesaikan persamaan. Karena persamaan ini memiliki kemiripan dengan persamaan yang mengungkapkan gelombang di fisika klasik, maka persamaan ini disebut dengan persamaan gelombang Schrödinger.
Persamaan gelombang partikel (misalnya elektron) yang bergerak dalam satu arah (misalnya arah x) diberikan oleh:
(-h2/8π2m)(d2Ψ/dx2) + VΨ = EΨ … (2.14)
m adalah massa elektron, V adalah energi potensial sistem sebagai fungsi koordinat, dan Ψ adalah fungsi gelombang.
BILANGAN KUANTUM
Karena elektron bergerak dalam tiga dimensi, tiga jenis bilangan kuantum (Bab 2.3(b)), bilangan kuantum utama, azimut, dan magnetik diperlukan untuk mengungkapkan fungsi gelombang. Dalam Tabel 2.3, notasi dan nilai-nilai yang diizinkan untuk masing-masing bilangan kuantum dirangkumkan. Bilangan kuantum ke-empat, bilangan kuantum magnetik spin berkaitan dengan momentum sudut elektron yang disebabkan oleh gerak spinnya yang terkuantisasi. Komponen aksial momentum sudut yang diizinkan hanya dua nilai, +1/2(h/2π) dan -1/2(h/2π). Bilangan kuantum magnetik spin berkaitan dengan nilai ini (ms = +1/2 atau -1/2). Hanya bilangan kuantum spin sajalah yang nilainya tidak bulat.

Tabel 2.3 Bilangan kuantum




Simbol lain seperti yang diberikan di Tabel 2.4 justru yang umumnya digunakan. Energi atom hidroegn atau atom mirip hidrogen ditentukan hanya oleh bilangan kuantum utama dan persamaan yang mengungkapkan energinya identik dengan yang telah diturunkan dari teori Bohr.
Tabel 2.4 Simbol bilangan kuantum azimut


d. Orbital
Fungsi gelombang elektron disebut dengan orbital. Bila bilangan koantum utama n = 1, hanya ada satu nilai l, yakni 0. Dalam kasus ini hanya ada satu orbital, dan kumpulan bilangan kuantum untuk orbital ini adalah (n = 1, l = 0). Bila n = 2, ada dua nilai l, 0 dan 1, yang diizinkan. Dalam kasus ada empat orbital yang didefinisikan oelh kumpulan bilangan kuantum: (n = 2, l = 0), (n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).
Singkatan untuk mendeskripsikan orbita dengan menggunakan bilangan kuantum utama dan simbol yang ada dalam Tabel 2.4 digunakan secara luas. Misalnya orbital dengan kumpulan bilangan kuantum (n = 1, l = 0) ditandai dengan 1s, dan orbital dengan kumpulan bilangan kuantum (n = 2, l = 1) ditandai dengan 2p tidak peduli nilai m-nya.

Pertanyaan dan jawaban mengenai Kelahiran Mekanika Kuantim.

1. Sejak kapan diketahui bahwa gelombang elektromagnetik, yang sebelumnya dianggap gelombang murni, berperilaku seperti partikel (foton)!, dan siapa ilmuan yang mengasumsikan!.
Pada paruh pertama abad ke-20, yang diasumsikan oleh Fisikawan Perancis Louis Victor De Broglie (1892-1987)
2. Jeleskan dengan apa yang dimaksud dengan prinsip ketidakpastian Heisenberg
Prinsip ketidakpastian Heisenberg adalah hasil kali antara ketidakpastian posisi  x dan ketidakpastian momentum  p akan bernilai sekitar konstanta Planck:
 x p = h (2.13)
3. Jelaskan makna dari Persamaan Schrödinger!, dan Apa fungsi dari Persamaan Schrödinger!.
fungsi gelombang. Schrödinger mendasarkan teorinya pada ide bahwa energi total sistem, E dapat diperkirakan dengan menyelesaikan persamaan. Karena persamaan ini memiliki kemiripan dengan persamaan yang mengungkapkan gelombang di fisika klasik, maka persamaan ini disebut dengan persamaan gelombang Schrödinger.
4. Bilangan Kuantum terdiri dari 4 macam bilangan, sebutkan ke 4 Bilangan tersebut Bilangan Kuantum?.
Bilangan Kuantum Utama, Bilangan Kuantum Azimut, Bilangan Kuantum Magnetik, dan Bilangan Kuantum Magnetik Spin.
5. Apa yang dimaksud dengan Orbital?.
Orbital adalah Fungsi gelombang electron yang mengelilingi atom

1. Spektrum atom

Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.

2. Teori Bohr
Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π

3. Spektra atom hidrogen
Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j.

4. Hukum Moseley
Fisikawan Inggris Henry Gwyn Jeffreys Moseley (1887-1915) mendapatkan, dengan menembakkan elektron berkecepatan tinggi pada anoda logam, bahwa frekuensi sinar-X yang dipancarkan khas bahan anodanya. Spektranya disebut dengan sinar-X karakteristik. Ia menginterpretasikan hasilnya dengan menggunakan teori Bohr, dan mendapatkan bahwa panjang gelombang λ sinar- X berkaitan dengan muatan listrik Z inti. Menurut Moseley, terdapat hubungan antara dua nilai ini (hukum Moseley; 1912).

5. Keterbatasan teori Bohr
Namun, spektra atom atom poli-elektronik tidak dapat dijelaskan. Selain itu, tidak ada penjelasan persuasif tentang ikatan kimia dapat diperoleh.

Pertanyaan dan jawaban mengenai Dasar-dasar Teori Kuantum Klasik

1. Hal-hal apa saja yang menjadi dasar-dasar teori kuantum klasik?
Spektrum Atom
Teori Bohr
Spektra Atom Hidrogen
Hukum Moseley
Keterbatasan Teori Bohr

2. Konsep apakah yang menjadi dasar teori kuantum klasik?
Teori kuantum klasik didasari oleh konsep dualisme partikel sebagai gelombang dan gelombang sebagai partikel.
3. Sebutkan isi dari Teori Bohr!
Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π
4. Hal apakah yang menjadi keterbatasan Teori Bohr?
Spektra atom atom poli-elektronik tidak dapat dijelaskan. Selain itu, tidak ada penjelasan persuasif tentang ikatan kimia dapat diperoleh.
5. Bagaimana spektrum atom terbentuk?
Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garis spektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.

Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger. Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.

Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.
model atom

Model atom mutakhir atau model atom mekanika gelombang



Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.

Pertanyaan dan jawaban mengenai Model Atom

1. Siapa saja yang mengemukakan pendapat tentang Model Atom?
John Dalton
Joseph John Thompson
Ernest Rutherford
Niels Bohr
2. Hal-hal apa saja yang menunjang teori Atom Dalton?
Hukum Kekekalan Massa ( hukum Lavoisier ): massa zat sebelum dan sesudah reaksi adalah sama.
Hukum Perbandingan Tetap ( hukum Proust ) : perbandingan massa unsur-unsur yang menyusun suatu zat adalah tetap.
3. Sebutkan kelemahan dari Model Atom Bohr!
Hanya dapat menerangkan spektrum dari atom atau ion yang mengandung satu elektron dan tidak sesuai dengan spektrum atom atau ion yang berelektron banyak.
Tidak mampu menerangkan bahwa atom dapat membentuk molekul melalui ikatan kimia.
4. Sebutkan Kelemahan Model Atom Rutherford!
Ketidakmampuan untuk menjelaskan mengapa elektron tidak jatuh ke inti atom akibat gaya tarik elektrostatis inti terhadap elektron.
Menurut teori Maxwell, jika elektron sebagai partikel bermuatan mengitari inti yang memiliki muatan yang berlawanan maka lintasannya akan berbentuk spiral dan akan kehilangan tenaga/energi dalam bentuk radiasi sehingga akhirnya jatuh ke inti.
5. Sebutkan pendapat J.J. Thompson mengenai model atom?
Ketidakmampuan untuk menjelaskan mengapa elektron tidak jatuh ke inti atom akibat gaya tarik elektrostatis inti terhadap elektron.
Menurut teori Maxwell, jika elektron sebagai partikel bermuatan mengitari inti yang memiliki muatan yang berlawanan maka lintasannya akan berbentuk spiral dan akan kehilangan tenaga/energi dalam bentuk radiasi sehingga akhirnya jatuh ke inti.

Kemajuan yang sangat pesat dalam sains paruh pertama abad 20 ditandai dengan perkembangan paralel teori dan percobaan. Sungguh menakjubkan mengikuti perkembangan saintifik sebab kita dapat dengan jelas melihat dengan jelas berbagai lompatan perkembangan ini. Sungguh kemajuan dari penemuan elektron, sampai teori kuantum Planck, sampai penemuan inti atom Rutherford, teori Bohr, sampai dikenalkan teori mekanika kuantum merangsang kepuasan intelektual. Dalam kimia penemuan ide umum orbital dan konfigurasi elektron memiliki signifaksi khusus. Ide-ide ini dapat dianggap sebagai baik modernisasi dan pelengkapan teori atom.
Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut. Anda dapat mempelajari perkembangan kronologis pemahaman hubungan antara materi dan listrik.
Tabel 2.1 Kemajuan pemahaman hubungan materi dan listrik.


Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai   hukum elektrolisis Faraday.
Faraday sendiri tidak bermaksud menggabungkan hukum ini dengan teori atom. Namun, kimiawan Irish George Johnstone Stoney (1826-1911) memiliki wawasan sehingga mengenali pentingnya hukum Faraday pada struktur materi; ia menyimpulkan bahwa terdapat satuan dasar dalam elektrolisis, dengan kata lain ada analog atom untuk kelistrikan. Ia memberi nama elektron pada satuan hipotetik ini.


Pertanyaan dan jawaban mengenai Penemuan Elektron

1. Apa yang menyebabkan terjadinya kemajuan sains paruh pertama pada abad-20?.
Kemajuan yang sangat pesat dalam sains paruh pertama abad 20 ditandai dengan perkembangan paralel teori dan percobaan.
2. Apa saja kemajuan penemuan-penemuan yang tercipta pada saat itu?. Sebutkan!.
Kemajuan itu antara lain adalah kemajuan dari penemuan elektron, sampai teori kuantum Planck, sampai penemuan inti atom Rutherford, teori Bohr, sampai dikenalkan teori mekanika kuantum.
3. Jelaskan Hukum Elektrolisis Faraday!.
Hukum Elektrilisis Faraday adalah jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C).
4. Kapan Faraday menemukan Hukum Elektrolisis Faraday!.
Farada menemukannya di tahun 1833
5. Sebutkan beberapa (minimal 3) Penemu Hukum-hukum, pada saat Kemajuan pemahaman hubungan materi dan listrik!.
Antara lain : Penamaan elektron (Stoney), Penemuan sinar katoda (Plücker), dan Penemuan hukum elektrolisis (Faraday).

Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.
Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.
Pertanyaan dan jawaban mengenai Stoikiometri

1. Apa yang dimaksud dengan Stoikiometri?.
` Stoikiometri adalah Aspek kuantitatif perubahan kimia
2. Jelaskan maksud dari Percobaan Willow?. Dan apa hubungannya dengan Stoikiometri!.
Percobaan Willow adalah Percobaan menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, percobaan ini menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri.
3. Siapa yang melakukan percobaan Willow?.
Percobaan Willow dilakukan oleh Filsuf dari Flanders Jan Baptista van Helmont (1579-1644).
4. Jelaskan manfaat dari Ilmu Stoikiometri bagi Hukum-hukum Ilmu Kimia!.
Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri.
5. Siapa yang menemukan hokum Kekekalan Massa?.
Yang menemukan Hukum Kekekalan Massa adalah Antoine Lavoisier pada tahun 1783.

a. Atom 

Dunia Kimia berdasarkan teori atom, satuan terkecil materi adalah atom. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron. Diameter inti sekitar 10–15-10–14 m, yakni sekitar 1/10 000 besarnya atom. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur. 
Massa proton sekitar 1,67 x 10–27 kg dan memiliki muatan positif, 1,60 x 10–19 C (Coulomb). Muatan ini adalah satuan muatan listrik terkecil dan disebut muatan listrik elementer. Inti memiliki muatan listrik positif yang jumlahnya bergantung pada jumlah proton yang dikandungnya. Massa neutron hampir sama dengan massa proton, tetapi neutron tidak memiliki muatan listrik. Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral. Sifat partikel-partikel yang menyusun atom dirangkumkan di Tabel 1.1. 




Tabel 1.1 Sifat partikel penyusun atom.





b. Molekul 
Komponen independen netral terkecil materi disebut molekul. Molekul monoatomik terdiri datu atom (misalnya, Ne). Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen (lihat bab 3.2(b)). 
Salah satu alasan mengapa mengapa diperlukan waktu yang lama sampai teori atom diterima dengan penuh adalah sebagai berikut. Dalam teorinya Dalton menerima keberadaan molekul (dalam terminologi modern) yang dibentuk oleh kombinasi atom yang berbeda-beda, tetapi ia tidak tidak menerima ide molekul diatomik untuk unsur seperti oksigen, hidrogen atau nitrogen yang telah diteliti dengan intensif waktu itu. Dalton percaya pada apa yang disebut “prinsip tersederhana”4 dan berdasarkan prinsip ini, ia secara otomatis mengasumsikan bahwa unsur seperti hidrogen dan oksigen adalah monoatomik. 


c. Ion 
Atom atau kelompok atom yang memiliki muatan listrik disebut ion. Kation adalah ion yang memiliki muatan positif, anion memiliki muatan negatif. Tarikan listrik akan timbul antara kation dan anion. Dalam kristal natrium khlorida (NaCl), ion natrium (Na+) dan ion khlorida (Cl¯) diikat dengan tarikan listrik. Jenis ikatan ini disebut ikatan ion (lihat bab3.2 (a)).


Pertanyaan dan jawaban mengenai Komponen-komponen Materi


1. Jelaskan pengertian dari Atom?
Atom adalah satuan terkecil materi. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia.
2. Atom terdiri atas beberapa Komponen. Sebutkan Komponen-komponen tersebut!.
Atom terdiri atas Inti Atom, dan Elektron. Inti Atom terdiri atas Proton dan Neutron. 
3. Sebutkan Massa masing-masing dari Proton, Neutron, dan Elektron?.
` Massa Proton : 1,672623×10-27 Kg
Massa Neutron : 1,674929×10-27 Kg
Massa Elektron : 9,109390×10-31 Kg
4. Jelaskan pengertian dari Molekul?, dan sebutkan macam-macam Molekul!.
Molekul adalah Komponen independen netral terkecil materi. Molekul terdiri dari Molekul Poliatomik, dan Molekul Monoatomik. 
5. Jelaskan pengertian dari Ion?, dan Sebutkan macam-macam muatannya!
Atom atau kelompok atom yang memiliki muatan listrik, Muatannya terdiri atas 2 macam yaitu Muatan Positif disebut dengan Muatan Kation, dan Muatan Negatif disebut dengan Muatan Anion



Kimia modern dimulai oleh kimiawan Perancis Antoine Laurent Lavoisier (1743-1794). Ia menemukan hukum kekekalan massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran. Berdasarkan prinsip ini, kimia maju di arah yang benar. 
Sebenarnya oksigen ditemukan secara independen oleh dua kimiawan, kimiawan Inggris Joseph Priestley (1733-1804) dan kimiawan Swedia Carl Wilhelm Scheele (1742-1786), di penghujung abad ke-18. Jadi, hanya sekitar dua ratus tahun sebelum kimia modern lahir. Dengan demikian, kimia merupakan ilmu pengetahuan yang relatif muda bila dibandingkan dengan fisika dan matematika, keduanya telah berkembang beberapa ribu tahun. 
Namun alkimia, metalurgi dan farmasi di zaman kuno dapat dianggap sebagai akar kimia. Banyak penemuan yang dijumpai oleh orang-orang yang terlibat aktif di bidang-bidang ini berkontribusi besar pada kimia modern walaupun alkimia didasarkan atas teori yang salah. Lebih lanjut, sebelum abad ke-18, metalurgi dan farmasi sebenarnya didasarkan atas pengalaman saja dan bukan teori. Jadi, nampaknya tidak mungkin titik-titik awal ini yang kemudian berkembang menjadi kimia modern. Berdasarkan hal-hal ini dan sifat kimia modern yang terorganisir baik dan sistematik metodologinya, akar sebenarnya kimia modern mungkin dapat ditemui di filosofi Yunani kuno. 
Jalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom. Sebenarnya, teori atom tetap tidak ortodoks dalam dunia kimia dan sains. Orang-orang terpelajar tidak tertarik pada teori atom sampai abad ke-18. Di awal abad ke-19, kimiawan Inggris John Dalton (1766-1844) melahirkan ulang teori atom Yunani kuno. Bahkan setelah kelahirannya kembali ini, tidak semua ilmuwan menerima teori atom. Tidak sampai awal abad 20 teori ato, akhirnya dibuktikan sebagai fakta, bukan hanya hipotesis. Hal ini dicapai dengan percobaan yang terampil oleh kimiawan Perancis Jean Baptiste Perrin (1870-1942). Jadi, perlu waktu yang cukup panjang untuk menetapkan dasar kimia modern. 
Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia. Adalah api yang menuntun manusia pada penemuan besi dan gelas. Setelah emas ditemukan dan menjadi logam berharga, banyak orang yang tertarik menemukan metode yang dapat merubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafat, mistisisme, dan protosains.
Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan-alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanya pada tahun 1783. Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia oleh Dmitri Mendeleyev pada tahun 1869.
Penghargaan Nobel dalam Kimia yang diciptakan pada tahun 1901 memberikan gambaran bagus mengenai penemuan kimia selama 100 tahun terakhir. Pada bagian awal abad ke-20, sifat subatomik atom diungkapkan dan ilmu mekanika kuantum mulai menjelaskan sifat fisik ikatan kimia. Pada pertengahan abad ke-20, kimia telah berkembang sampai dapat memahami dan memprediksi aspek-aspek biologi yang melebar ke bidang biokimia.
Sebagaimana dicatat sebelumnya, kimia adalah ilmu yang relatif muda. Akibatnya, banyak yang masih harus dikerjakan sebelum kimia dapat mengklaim untuk mempelajari materi, dan melalui pemahaman materi ini memahami alam ini. Jadi, sangat penting di saat awal pembelajaran kimia kita meninjau ulang secara singkat bagaimana kimia berkembang sejak kelahirannya.




Pertanyaan dan jawaban mengenai Sejarah Lahirnya Kimia


1. Jelaskan sebab sejarah awal ditemukannya ilmu kimia?
Api yang menuntun manusia pada penemuan besi dan gelas. Setelah emas ditemukan dan menjadi logam berharga, banyak ilmuan yang tertarik menemukan metode yang dapat merubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia ( Ilmu Kimia ). Alkimia dipraktikkan oleh banyak para ilmuan hingga saat ini metode yang dapat merubah suatu zat menjadi zat yang lain dikenal dengan sebutan Ilmu Kimia
2. Kapan Ilmu Kimia dimulai?, dan siapa ilmuan yang menemukannya?.
Ilmu Kimia dimulai sejak ditemukan hukum kekekalan massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran. Ungkapan ini ditemukan oleh kimiawan Perancis Antoine Laurent Lavoisier (1743-1794).
3. siapa sebenarnya akar dari Ilmu Kimia?, dan apa penyebabanya?.
metalurgi dan farmasi di zaman kuno dapat dianggap sebagai akar kimia. Banyak penemuan yang dijumpai oleh orang-orang yang terlibat aktif di bidang-bidang ini berkontribusi besar pada kimia modern walaupun alkimia didasarkan atas teori yang salah.
4.   Siapa kimiawan pertama yang dianggap menerapkan metode ilmiah terhadap  alkimia?
Kimiawan Robert Boyle
5.   Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia. Siapa yang menemukan table priodik unsur kimia ? dan pada tahun berapa di temukannya?
Dmitri Mendeleyev pada tahun 1869

Translator

English French German Spain Italian Dutch

Russian Portuguese Japanese Korean Arabic Chinese Simplified
by : BTF

Stats

free counters

My Campus

Mengenai Kami

Kelompok 10 Teknik Industri Universitas Mercubuana

Assalamu'alaikum...
Perkenalkan, kami kelompok 10 Teknik Industri Universitas Mercubuana Tahun 2009.
Anggota kami :
1-Anton Giardhi B(41609010039)
2-Ahcmad Mathhuri(41609010036)
3-Eko Setiawan(41609010038)
4-Irfan Widiarto(41609010037)

Calendar


ShoutMix chat widget